((4x^2)/25)+x^2=196

Simple and best practice solution for ((4x^2)/25)+x^2=196 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((4x^2)/25)+x^2=196 equation:



((4x^2)/25)+x^2=196
We move all terms to the left:
((4x^2)/25)+x^2-(196)=0
We get rid of parentheses
x^2+4x^2/25-196=0
We multiply all the terms by the denominator
4x^2+x^2*25-196*25=0
We add all the numbers together, and all the variables
4x^2+x^2*25-4900=0
Wy multiply elements
4x^2+25x^2-4900=0
We add all the numbers together, and all the variables
29x^2-4900=0
a = 29; b = 0; c = -4900;
Δ = b2-4ac
Δ = 02-4·29·(-4900)
Δ = 568400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{568400}=\sqrt{19600*29}=\sqrt{19600}*\sqrt{29}=140\sqrt{29}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-140\sqrt{29}}{2*29}=\frac{0-140\sqrt{29}}{58} =-\frac{140\sqrt{29}}{58} =-\frac{70\sqrt{29}}{29} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+140\sqrt{29}}{2*29}=\frac{0+140\sqrt{29}}{58} =\frac{140\sqrt{29}}{58} =\frac{70\sqrt{29}}{29} $

See similar equations:

| 20-x+x+15+-25=90 | | -4d=-3d-12 | | 4p=5p+8 | | 43=c-19 | | 25=5-5y | | 4x+5-12=3x-3 | | 20=10-2y | | 2|-x+7|=20 | | (3x+)(4x-6)=0 | | 50=10-10y | | w/9=9-(-4) | | 6x2+-2x-4=0 | | 2x+6x-13=8x-7-5= | | 1.75=2x+4.9x^2 | | 56+4x+112=90 | | y-1=2/3+2 | | 6|x+1|=48 | | 10q−4=76 | | T=300(d−15)2​ +20 | | -2(x-3)/5=4x5 | | -0.8g=-3.36 | | X-52=3x+12 | | c-43=20 | | (r-10)/8=1 | | X-0.8x=124 | | 5*6+6/6-12*2=n | | 3x=4=x+14 | | T(n)=2(3)^n | | X-8x=124 | | -30+7x=-4(2x-9)+4x | | 0=2x^2+11x+0 | | -13c-2=14c-18 |

Equations solver categories